Your presenter...

Mike Busch A\&P/IA

Columnist - AOPA PILOT magazine
Instructor - EAA Webinars
Podcaster - Ask the A\&Ps (AOPA)
National Aviation Maintenance
Technician of the Year (2008)
President - Savvy Aviation, Inc.

Mo 1000 \#7 Mo 1300 \#7 Tu 0830 \#7 Tu 1000 \#7 Tu 1300 \#7 We 0830 \#7 We 1130 \#7 We 1430 \#7
Fr 0830 \#7
Fr 1000 \#7
Fr 1300 \#7
Sa 1000 \#7
Sa 1300 \#7

The EGT Myth How Healthy Is Your Engine?
To TBO and Beyond... Leaning The Right Way Destroy Your Engine in 1 Minute Cylinder Break-In: Do It Right What Is Preventive Maintenance? Cylinder Work: Risky Business It's Baffling Where Fuel Meets Air Benefits of Running Oversquare How Mags Work...and Fail Predictive Maintenance

Copyright 2021 Savvy Aviator, Inc.

to receive my monthly e-newsletter and weekly maintenance stories It's Baffling

"I recently had my engine rebuilt and had a new baffle kit installed..."

Cessna T210

"The CHTs for cylinders \#5 and \#6 are always $20^{\circ} \mathrm{F}$ to $30^{\circ} \mathrm{F}$ hotter than the rest..."

"During climb the difference

 gets even bigger..."
"Cylinder \#5 and \#6 CHTs are

 very difficult to keep below $400^{\circ} \mathrm{F}$ during a climb, even with the cowl flaps open and fullrich mixture..."
"Should I consider giving them some air?"

"On cylinder \#6, why not cut one or more holes in the white aluminum baffle in front of the cylinder?"

"On cylinder why not drill one or more holes in the horizontal aluminum plate located behind the oil cooler?"

 cutting holes in the baffles was definitely NOT a good idea, and that doing so would make his cooling problems worse, not better

It was apparent that this

 owner didn't understand how the powerplant cooling system in his aircraft works and what the function of the baffles is...(He's not alone-some A\&P mechanics don't fully understand it, either!)

1920s

2010s

Engine Coolinga Then and Now.a.

In the early days, aircraft designers took a simple approach to the problem of cooling aircraft engines...

The engines were mounted with their finned cylinders out in the slipstream and cooled by the horizontal flow of ram air

This is known as "velocity

 cooling" and was adequate for cooling the single-row radial engines of the time
As engines grew more powerful and multi-row radials and horizontally opposed engines came into fashion, simple velocity cooling wasn't up to the job

For one thing, cooling was

 uneven-front cylinders got a lot more cooling airflow than rear onesFor another, sticking all those finned cylinders out in the breeze created horrendous cooling drag

That better

 system was known as "pressure cooling" and is the method used in all modern piston aircraft
Pressure cooling is

 accomplished by placing a cowling around the engine and using a system of rigid baffles and flexible baffle seals to produce the volume and pattern of cooling airflow necessary to achieve even cooling with minimum drag

The volume of cooling

 the cylinders is a function of the pressure difference (" $\Delta \mathrm{P}$ ") between the high-pressure (upper) chamber and the low-pressure (lower) chamber
ΔP is remarkably small:

 A typical high-performance piston aircraft generally relies on a ΔP of just 6-7 inches of water-about 1/4 PSIAircraft designers try to keep this ΔP to an absolute minimum, because higher delta-P means higher cooling drag

High-

Cowl flaps may be used

 to modulate the cooling airflow

Opening the cowl flaps reduces the pressure in the lower chamber, and increases ΔP and the volume of cooling air that passes vertically across the cylinder fins

Because ΔP is so tiny, even small leaks in the system of baffles and seals can have a serious adverse impact on cylinder cooling

Any missing, broken, or

 improperly positioned baffles or seals will degrade engine cooling by providing an alternative path for air to pass from the upper chamber to the lower chamber without flowing across the cylinder cooling fins

That's why doing this would have made the cooling situation worse!

What's wrong with this picture?

What's wrong with this picture?

What's wrong with this picture?

OSARONTHE
OSHKOSH
Savvy

One of the most problematic parts of the cooling system is the flexible baffle seals

These silicone rubber strips are used to seal up the gaps between the rigid sheet metal baffles and the cowling

These flexible seals are

 necessary because the baffles move around inside the cowling as the engine rocks on its shock mountsThe flexible seals must curve up and forward so that
ΔP presses the seals tightly against the cowling

If the seals are permitted to tsuny

 curve away from the highpressure area-not hard to do when reinstalling the cowlingthey will blow away from the cowling in-flight and permit precious cooling air to escapeAnother common problem is that seals may develop wrinkles or creases when the cowling is installed, preventing them from sealing airtight against the cowling

Inspect for such problems whenever the cowling is removed and replaced

Yet another common cooling

 intercylinder baffles

Their purpose is to prevent

 cooling air from passing through the spaces between adjacent cylinders, and to force the down-flowing cooling air to wrap around and cool the bottom of the cylinders, rather than just cooling the top and side

Why the T210 Cylinders Ran Hotaa

Studying photos sent by

 the T210 owner, I was able to identify a dozen leaks in the T210's baffle system-some small, others more serious-that combined accounted for a significant loss of cooling efficiencyWith a little trimming of the flexible seal strips plus a few well-placed dabs of high-temp RTV sealant, the owner succeeded in plugging the leaks in short order, and reported that his engine was running noticeably cooler
Mo 1000 \#7 Mo 1300 \#7 Tu 0830 \#7 Tu 1000 \#7 Tu 1300 \#7 We 0830 \#7 We 1130 \#7
We 1430 \#7
Fr 0830 \#7
Fr 1000 \#7
Fr 1300 \#7
Sa 1000 \#7
Sa 1300 \#7

The EGT Myth How Healthy Is Your Engine?
To TBO and Beyond... Leaning The Right Way Destroy Your Engine in 1 Minute Cylinder Break-In: Do It Right What Is Preventive Maintenance? Cylinder Work: Risky Business It's Baffling
Where Fuel Meets Air Benefits of Running Oversquare How Mags Work...and Fail Predictive Maintenance

Copyright 2021 Savvy Aviator, Inc.

to attend my free monthly

 maintenance webinarson the first Wednesday of each month
(sponsored by EAA and Aircraft Spruce)

to receive my monthly e-newsletter and weekly maintenance stories

OSAKOSH
Savvy

Available at amazon

Manifesta

Questions?

Contact info:

 Mike.Busch@SavvyAviation.com
SAVVY/AviAtion.com

To receive my monthly newsletter and weekly maintenance stories, text "SAVVY" to 33777

